
Testing and Programming the Integrator/ Digitizer Card for the

Beam Loss Monitoring System

Prakrit Nepali Shrestha

Physics Department, The College of Wooster

Supervisor: Craig Drennan

Proton Source, Accelerator Division

SIST Program

Fermi National Accelerator Laboratory

Batavia Illinois 60510

(Dated: August 7, 2013)

Abstract

The beam loss monitoring system is one of the most widely used systems in particle accelerators.

Beam losses are used for beam tuning and accelerator diagnostics. The BLM systems implemented

at Fermilab are comprised of two fundamental component, the BLM detector and the VME crate.

In this project a program to configure and test the Integrator/ Digitizer card in the VME crate

was developed. In this project, we have successfully developed user interface to program and

configure the FPGA via the EEPROM for the Digitizer/ Integrator card. Furthermore, routines

were developed to test different components of the card.

1



Contents

I. Introduction 3

II. Digitizer Card 4

III. Programming the Board 6

A. User Interface for Programming FPGAs 7

B. Testing the Digitizer Card 10

IV. Conclusion 13

V. Acknowledgments 14

References 14

A. BLM Digitizer Calibration – Scaling for the Integrator 15

B. Description of Specific Registers 15

2



I. INTRODUCTION

Fermilab’s mission of understanding the nature of matter and energy is conducted through

high energy and high intensity particle physics research. Particle accelerators accelerate par-

ticles to high energies. At Fermilab, Hydrogen ions are initially accelerated through a linear

accelerator up to 400 MeV. Next the beam enters the Booster ring that uses magnets to

bend the beam into a circular path. One of the most important beam diagnostic systems

needed in such accelerators is the Beam Loss Monitor (BLM). In a perfect system, installing

a BLM system would be illogical and unnecessary, however since we do not possess such

a machine, it is necessary to install this system. As the particles are accelerated in the

Booster, controls must be adjusted to ensure that the beam stays in the accelerator and

does not scrape against the inside. This beam is really powerful and can generate losses

that could damage the magnets and other components by inducing stray radiation. The

beam loss monitoring system is one of the most widely distributed systems in most particle

accelerators. Beam losses are used for beam tuning and accelerator diagnostics.

The BLM systems implemented at Fermilab are comprised of two fundamental compo-

nent: the BLM detector and Integrator and Readout Electronics.

The BLM detector is an argon filled glass cylindrical ionization chamber with nickel elec-

trodes. The gas is 1 atm pure argon with an active volume of about 110 cm3. This design

was chosen to be extremely radiation hardened [1]. The inner electrode, anode (high volt-

age) is placed in the center and the outer electrode, cathode (signal) surrounds the inner

electrode as a cylinder. The argon gas fills the space between these electrodes. Argon gas,

being inert has a very low electron attachment to form negative ions, and hence the electron

drift velocity is about 0.5 cm/μs which gives a large prompt signal. The detector calibration

is about 70 nC/Rad and is extremely stable [2]. The radiation induced current at the cath-

ode is brought to the integrator electronics crate via RG-58 coaxial cables. The electronics

are powered and integrated in VME crates. The full set of electronics constitutes a number

of boards handling various functionalities. The crate consists of a the following cards:

· Control Card (CC): setup and control the overall system,

· Timing Card (TC): generate and distribute timing signals to other cards,

· Abort Card (AC): contain the abort decision logic,

· High Voltage Card (HV): provide high voltage bias for the loss monitor tubes,

3



· Integrator/ Digitizer Card (DC): integrate and digitize the current from ionization

chambers.

In addition to these cards, there is a VME slot 1 crate processor card (CP) that communi-

cates data to the main control room via the Accelerator Controls Network (ACNET). This

project is limited to studying and testing the Integrator/ Digitizer Card. This paper explains

in brief about the mechanism of the Digitizer Card, programming the Field Programmable

Gateway Arrays (FPGAs) implemented in the module and testing the module itself.

II. DIGITIZER CARD

The digitizer card is the primary data collector in the system. It is a dual FPGA based

module that performs integration and digitization of the current from up to four ionization

chambers. A TI/ Burr-Brown ACF2101 dual integrator is implemented to switch the BLM

charge rapidly between the two integrators so as to collect all the charge produced. As one

channel is integrating for 20 μs, the other is being digitized and reset. The integrated signal

is then sent to the Analog-to-Digital Converter (ADC) to produce a number. The ADC

converter used is Analog Devices AD7654. Figure. 1 shows a simplified illustration of the

integrator circuit.

The digitizer has a 16 bit resolution and the scaling is such that one digitizer count represents

15.26 fC of charge in the integrator. Prior to each beam injection a pedestal value is measured

to compensate for intentional and unintentional offsets or noise in the system. This signal

is digitized and then subtracted from each integration period [3].

Data acquisition starts upon receipt of a TTL trigger. The 20 μs integrated analog signal

is digitized into a 16 bit word. These 20 μs samples are summed into 80 μs samples and then

divided by 4, the average is then written to a First In First Out (FIFO) memory. Data is

collected for 40 ms at a rate of 12.5 kHz (80μs) for each Booster cycle to obtain 500 samples

per cycle. There are a number of BLM channels in a particular location around the booster

ring ranging from 12 – 24. Figure 2 shows a schematic of this process. These base 80 μs

integration samples are transferred over the VME bus to be summed in different manners

to represent accumulation of beam loss for different purposes [4]. A mathematical scaling

for the integrator can be found in Appendix A.

4



FIG. 1: Figure shows a simplified BLM Integrator circuit. Current induced at the ion chamber is

transferred via the RG-58 cable to the integrator card where the signal is integrated, digitized and

sent to the FPGA.

5



FIG. 2: Simplified block diagram of the BLM digitizer data processing. For each digitizer, the 20 μs

signals are accumulated and the base 80 μs signal is averaged by 4 and written to the FIFO [4].

III. PROGRAMMING THE BOARD

The Integrator/ Digitizer board is controlled using software routines written in the C

programming language. The program files along with the startup scripts are stored in the

‘nova.fnal.gov’ server in Fermilab’s cloud computing environment. To communicate with

the board we use an open source terminal emulator software called Tera Term. Tera Term

communicates with the CPU (Motorola MVME2300 - MPC 603p) via the RS232 serial port.

The information is then sent to the VxWorks OS. VxWorks is a real time operating system

that is used for memory management and networking of the board. The VxWorks OS is

stored in the non-volatile memory which communicates with Nova via the ethernet network.

Figure 3 shows a schematic for the communication between Nova and Tera Term.

Similar to any other hardware and operating system, it is necessary to boot the

MVME crate by either holding down the ‘ctrl+x’ keys on Tera Term or by pressing the

‘rst’ button on the MVME crate processor. The boot script is loaded from ‘/fecode-

6



FIG. 3: Schematic for communication between Tera Term and Nova.

bd/vxworks boot/fe/blrfd3/startup’. There are several startup scripts available for different

testing purposes. The primary startup script used for miscellaneous testing is located in

‘. . . /blrfd3/startup wallerTests’. The script is loaded by commenting out the other startup

script files. When booting, the program files wallerTests.o, vme test1.o and blmdev.o lo-

cated in the same folder (. . . /blrfd3) are also loaded. These program files are compiled and

generated within their respective directories by typing the ‘make’ command which invokes

Makefile and by typing the ‘pub’ command, these files are copied into the ‘/blrfd3’ folder.

Analogous to the ‘/vxworks boot’ directory there is another folder, ‘/vxworks write’ is at-

tached as a NSF drive for reading and writing data during run time. Any file that is to

be loaded for writing or testing must be contained in this folder. In TeraTerm, the folder

located in ‘/fecode-bd/vxworks write/fe/proton/blrfd3’ can be substituted as ‘/remote’.

A. User Interface for Programming FPGAs

An FPGA is a semiconductor device that can be programmed after its fabrication. It

allows the programmer to access the product features and reconfigure the logic chip for spe-

cific applications (field-programmable). There are two FPGAs implemented to control the

integrators, interface with the signal digitizers and the digital-to-analog-converters (DACs).

The digitized signal from the ADC’s are routed to both FPGAs. The upper FPGA, referred

to as DCINTEG manages the sequencing and readout of the integrator channels and does

7



scaling and averaging of the readings. The lower FPGA, referred to as DCSUMS manages

a number of varying length sums of the integrator data and is the interface for the DAC

analog outputs.

The FPGAs are manufactured by Altera and hence the development environment used

to write and compile the FPGA code is Quartus. Before FPGA code is loaded into the

module, a *.bst file must be created using ATMEL Programming System [5].

The FPGAs on the digitizer card are configured from the EEPROM device AT17LV002A

at each power up. The contents of the EEPROM can be read and rewritten from the MVME

CPU. Once the EEPROM is successfully rewritten, the FPGA will be configured with new

firmware at next power up [3]. Previously, in order to program the FPGA, an ATMEL pro-

gramming cable was connected between the parallel port of the computer and configuration

connector. Now, once the *.bst file has been created and copied in the appropriate folder the

user is able to program the FPGA directly via the CPU and the VME bus. In order to do

this, the user may communicate with the CPU via Tera Term and enter either ‘menufpga’

or ‘cmd’ command when prompted with the ‘BLRFD3–>’ prompt to enter the respective

programming modes. In the Menu/‘menufpga’ mode, the user is prompted with questions

to indicate the specific digitizer board (iBoard) in the crate, which FPGA (INTEG/ SUMS)

is to be accessed, and the name of the file (fname) to be read or written to. Similarly, in the

command line/ ‘cmd’ mode, the user is able to do all this with a single line of command.

The user has the following options for programming the FPGAs:

• Read EEPROM then store data to file: This will read the current EEPROM config-

uration for the selected FPGA from the board whose address is specified by iBoard.

The data is then written to the file specified by fname in the ATMEL *.bst format.

• Config EEPROM from file: This will write the configuration EEPROM for the selected

FPGA from the board whose address settings are specified by iBoard. The EEPROM

is configured with data from the file specified by fname. The file is expected to be in

the ATMEL *.bst format. Optionally, the data is read back out of the EEPROM and

compared to the original file specified by fname.

• Compare data file and EEPROM data: This will read the configuration EEPROM for

the selected FPGA from the board whose address settings are specified by iBoard. The

8



data is then compared to the data in the file specified by fname. The file is expected

to be in the ATMEL *.bst format.

• Read EEPROM, store data to file then verify: This will read the current EEPROM

configuration for the selected FPGA from the board whose address is specified by

iBoard. The read data is then compared to the data in the file specified by fname.

The user interface also offers a help function to the user that describes the syntax and

function of each command in detail. The user may access the help function by entering ‘help’.

Fig. 4 and Fig. 5 show a screen shot of the two modes that can be used for programming

the FPGA. Once the EEPROM is successfully rewritten, the new FPGA configuration will

be effective at the next power up.

FIG. 4: Screenshot of the menu displaying the options to the user in Tera Term for programming

the FPGA. Here, the user read the current configuration from the EEPROM and saves it as a file

named fpgaUp.bst.

9



FIG. 5: Screenshot of the command line mode for programming the FPGA. The program initially

displays the syntax for all possible commands for the user and the user is able to program the FPGA

using a single line command. Here, the user configured the EEPROM from the upper130722.bst

file for the INTEG. Once configuration is complete, the data from the file and the data from the

EEPROM is verified.

B. Testing the Digitizer Card

The digitizer card can be tested to ensure that the module is working as intended. For

the purpose of this project, we performed three main types of tests.

For the first test, we supplied two known pulse inputs using a Tektronix AFG3102 Signal

Source. The first pulse provides the TTL trigger to begin the measurement. The second

pulse, represents the charge pulse from the BLM. There is a delay between the trigger pulse

and the signal pulse to allow for the measuring the pedestal before the active integration

begins. Figure 6 illustrates the connection of the test equipments [5]. By comparing the

digitized output obtained from the module with the oscilloscope traces, the front panel

inputs can be evaluated.

For the second test, the on board Digital-to-Analog-Converter (DAC) is used to send a fixed

current to the input of the integrator. This value is set from the Test DAC register written

in the FPGA. During this test mode, it is necessary to remember to turn off all external

input sources and triggers. There is a DIP switch that works with the code to identify the

board address and to select modes for testing the board. For the MVME 2301 the base

10



FIG. 6: Schematic that shows the connection from the signal source and the module. The signals

are also connected to an oscilloscope for comparison purposes.

address is 0xfa000000. FPGA registers are accessed using memory addresses computed as

follows:

VMEAddress = 0xfa000000 + (iBoard << 20) + Reg Offset.

A list of the memory addresses used along with their descriptions can be found in Ap-

pendix B.

To start the test, ensure that DIP switch 7 or command register (0x01000) bit 14 is set

to logic 1 position to nullify the effect of the external trigger at T1. Once DIP switch 7 has

been set, the Alternate Integrator Control register at address offset 0x01034 is enabled. By

writing 0xff00 to this address, the front panel signal will be turned off and the test input

will be switched on [6]. The board is now ready for testing.

The test input can be set by writing to the Test DAC Setting register at address offset

0x01048. The full scale output for the DAC is 0x7fff which is equivalent to 9.97 V. The

converted analog signals are sent back to the integrator to be integrated and digitized. A

40 ms data acquisition cycle can be started and stopped by writing anything to address

offset 0x01010 and 0x01012 respectively. The 500 samples collected are stored in the FIFO

at address offsets 0x01020, 0x01022, 0x01024 and 0x01026 for channel 1, 2, 3 and 4 respec-

tively. By comparing the data from the FIFO to the test DAC settings, the Integrator and

Digitizer can be evaluated. The program for testing the module offers a high level and a

11



FIG. 7: Screenshot shows the high level and the low level tests developed for testing the module.

low level test mode for the user. The high level mode allows the user to perform a full DAC

test. This option performs the full DAC test as described earlier. In addition, this mode

reads the signal for each of the 4 channels, calculates the pedestal and displays the RMS,

mean, minimum and maximum value. The high level mode also allows the user to check

and modify the DAC status and, read/write and store data in the FIFO. The data in the

FIFO is then be stored in a file of format ‘fifoYYMMDD HHmm.txt’ where YYMMDD is

the current date and HHmm is the current time in the given format. The low level test mode

allows users to perform more controlled operations. It allows the user to read and modify

registers at desired address offset. The user is able to perform each step in the entire process

individually and check the status of the board. A screenshot of the program developed to

test the module is shown in Fig. 7.

A third approach is to replace the digitized results of the integrated test DAC signal with

fixed values from the ROM memory within the FPGA. The ROM data skips the integration

and the digitization step and is directly stored into the FIFO. This test provides the option

to skip the averaging of the data as well. The data stored in the FIFO is again compared

to an expected data file computed from the known ROM values. The motivation behind

creating this test was to check the update status of the data sent to ACNET. This test can

be used to test the Averaging and the transfer of data via the VME bus. To switch the data

12



acquisition from the test DAC to the ROM, a terminator (standard 50 Ω resistor) must be

plugged into the Trigger Two (T2) input on the front panel. Similarly, in order to write the

ROM data into the FIFO, the DIP switch 5 or command register bit 12 must be set to logic

1 position. Figure 8 shows simplified schematic for this process.

FIG. 8: A simplified block diagram of the BLM digitizer test. The diagram shows how the switches

determine the source of the test data.

Similar to the full DAC test, the program also offers a full ROM test mode that reads test

data from the ROM memory and writes it to the FIFO. The data written in the FIFO is

then compared to a computed/expected file that the user could average by plugging in a

terminator at T2 in the front panel. The expected data is stored into a file named either

‘average rom data.txt‘ or ‘rom data.txt’ depending on the averaging. These two data are

then compared and the result is displayed.

In order to start testing the module, the user must open Tera Term and enter ‘menuvme’

command when prompted with the ‘BLRFD3–>’ prompt to enter the high level testing

mode. From this mode, the user may enter the low level testing mode by selecting the

appropriate option.

IV. CONCLUSION

In this project, we have successfully developed user interface to program and configure

the FPGA via the EEPROM for the Digitizer/ Integrator card. The next immediate step is

to develop the program to further test more specific components of the card. We have also

developed several routines to test different components of the module. There can be up to

16 DCs in the crate, hence it was necessary to account for multi-board programming and

testing. Although the program allows for multi-board programming and testing, no such

13



test has yet been performed. The next step in this project would be to program the FPGA

and perform tests for multiple boards.

V. ACKNOWLEDGMENTS

I would like to thank my supervisor, Craig Drennan for explaining the details about the

BLM data acquisition process and the Digitizer/Integrator card. I would like to thank Diane

Engram, Elliott McCrory and the entire SIST committee for giving me this opportunity to

spend my summer at Fermilab.

[1] R. E. Shafer et al., Comments on the Tevatron BLM System, Fermilab BEAMS-DOC-790, July

2003.

[2] R. E. Shafer et al., A Tutorial on Beam Loss Monitoring, in proceedings of Beam Instrumen-

tation Workship (NIW02), pp. 44-58, 6-9 May 2002, Upton, New York, USA.

[3] A. Baumbaugn et al., Beam Loss Monitor Upgrades at Fermi National Accelerator Laboratory,

August 2011.

[4] C. Drennan, Booster Beam Loss Monitor Data Acquisition and Presentation Specification. Fer-

milab BEAM-DOCS-3723, December 2011.

[5] J. Lackey, C. Drennan Booster Wire Scanner Integrator. Fermilab BEAMS-DOC-3723, October

2009.

[6] C. Drennan, Interfacing to the Booster BLM Upgrade Integrator/Digitizer VME Module. Fer-

milab BEAM-DOCS-3780, February 2011.

14



Appendix A: BLM Digitizer Calibration – Scaling for the Integrator

The combinations of integrators and ADC results in a conversion between Coulombs

of charge and the resulting 16 bit digitized output. In the default low range mode, the

integration opamp contains a 100 pF feedback capacitor. This produces a voltage out of the

integration opamp of 1.0 × 10–14 V/C. The integrator output is then scaled to fit the input

range of the ADC by a scale factor of 0.483.

The integrator output voltage digitized each 20μs sampling interval is the sum of the charge

collected in the previous 20μs interval to get a final sample of 80μs. The voltage at the input

to the ADC is

V(t) =
0.4827

1.0 × 10–14

∫ t+T/4

t
Qin(τ)dτ,

where T = 80μs. Assume that the kth digitized 20μs integration sample as Y(kT/4). The

digitizer output a 16 bit value and has an input voltage range of 5 V.

Y(kT/4) =
216

5
V(kT/4).

The digitized value written to the FIFO memory on the module and read by the front end

processor is the average of 4 of these 20μs integration samples. These can also be described

as scaled 80μs integration samples.

A(kT) =
216

5

1

4
[V(kT/4) + V(2kT/4) + V(3kT/4) + V(kT)]

= G1

[∫ kT/4

(k–1)T
Qin(τ)dτ+

∫ 2kT/4

kT/4
Qin(τ)dτ+

∫ 3kT/4

2kT/4
Qin(τ)dτ+

∫ kT

3kT/4
Qin(τ)dτ

]

= G1

∫ kT

(k–1)T
Qin(τ)dτ,

where k = 1, 2, 3, . . . , 500 and G1 = 216

5
1
4

0.4827
1.0×10–14

= 15.817 × 1012 bits/C 7.

Appendix B: Description of Specific Registers

15



TABLE I: Internal Registers and Control

Register
Address R/W Description

Command Register 0x01000 – See Table II
Start DAQ Command 0x01010 W Send command to start the 40ms

data acquisition.
Stop DAQ Command 0x01012 W Send command to stop the 40ms

data acquisition.
Clear FIFO Command 0x01014 W Send command to clear the data

FIFO’s.
Channel 1 Data FIFO 0x01020 R Data FIFO output port. This FIFO

channel is also mapped to the ad-
dress range 0x01200 to 0x013FF.

Channel 2 Data FIFO 0x01022 R Data FIFO output port. This FIFO
channel is also mapped to the ad-
dress range 0x01400 to 0x015FF.

Channel 3 Data FIFO 0x01024 R Data FIFO output port. This FIFO
channel is also mapped to the ad-
dress range 0x01600 to 0x017FF.

Channel 4 Data FIFO 0x01026 R Data FIFO output port. This FIFO
channel is also mapped to the ad-
dress range 0x01800 to 0x019FF.

Number of records in Channel 1
FIFO

0x01028 R

Number of records in Channel 2
FIFO

0x0102A R

Number of records in Channel 3
FIFO

0x0102C R

Number of records in Channel 4
FIFO

0x0102E R

FIFO Status Register 0x01030 R See Table III
Alternate Integrator Control Regis-
ter 1

0x01032 R/W See Table IV

Alternate Integrator Control Regis-
ter 2

0x01034 R/W See Table V

Channel 1 Average Register 0x01038 R
Channel 2 Average Register 0x0103A R
Channel 3 Average Register 0x0103C R
Channel 4 Average Register 0x0103E R
Test DAC Setting Register 0x01048 R/W Setting for the Test DAC. Full scale

output is 0x7FFF.

16



TABLE II: Command Register

Bit Description
0 Error signal J2
1 Use Alternate Integrator Control Signal Register 1. This is a VME controlled reg-

ister used to manipulate the individual integrator Hold, Select, and Reset switches
integral to the TI/ Burr Brown ACF2101 dual integrators.

2 Disable Baseline Subtraction when logic high.
3 Unassigned
5..4 Test Vector Select Bits
11..6 Unassigned
12 Dip Switch 5
13 Dip Switch 6
14 Dip Switch 7
15 Unassigned

TABLE III: FIFO Status Register

Bit Description
0 FIFO Channel 1 Full
1 FIFO Channel 1 Empty
2 FIFO Channel 2 Full
3 FIFO Channel 2 Empty
4 FIFO Channel 3 Full
5 FIFO Channel 3 Empty
6 FIFO Channel 4 Full
7 FIFO Channel 4 Empty
15..8 Unassigned

TABLE IV: Alternate Integrator Control Register 1

(This register is enables only if Bit 1 of the Command Register is High)

Bit Description
0 Hold off the output of Channel 1 and 2 side B
1 Select Channel 1 and 2 side B for digitization
2 Reset the B side integrators on Channel 1 and 2
3 Hold off the output of Channel 3 and 4 side B
4 Select Channel 3 and 4 side B for digitization
5 Reset the B side integrators on Channel 3 and 4
6 Hold off the output of Channel 1 and 2 side A
7 Select Channel 1 and 2 side A for digitization
8 Reset the A side integrators on Channel 1 and 2
9 Hold off the output of Channel 3 and 4 side A
10 Select Channel 3 and 4 side A for digitization
11 Reset the A side integrators on Channel 3 and 4
15..12 Unassigned

17



TABLE V: Alternate Integrator Control Register 2

(This register is enables only if either DIP switch SW7 is High or bit 14 of the Command Register

is High)

Bit Description
0 Switch the integrating capacitor to 500pF in Channel 1
1 Switch additional 16kΩ resistor in series with input for Channel 1
2 Switch the integrating capacitor to 500pF in Channel 2
3 Switch additional 16kΩ resistor in series with input for Channel 2
4 Switch the integrating capacitor to 500pF in Channel 3
5 Switch additional 16kΩ resistor in series with input for Channel 3
6 Switch the integrating capacitor to 500pF in Channel 4
7 Switch additional 16kΩ resistor in series with input for Channel 4
8 Switch the Test Input on for Channel 1
9 Switch the Test Input on for Channel 2
10 Switch the Test Input on for Channel 3
11 Switch the Test Input on for Channel 4
12 Switch Front Panel Signal into integrator for Channel 1
13 Switch Front Panel Signal into integrator for Channel 2
14 Switch Front Panel Signal into integrator for Channel 3
15 Switch Front Panel Signal into integrator for Channel 4

18


